Process Development to Maximize Water Recovery during Energy Production and CO 2 Sequestration

نویسنده

  • Jonathan A. Brant
چکیده

The development of Wyoming’s energy resources (coal bed methane extraction [CBM], hydraulic fracturing) and carbon dioxide (CO2) sequestration sites all invariably result in the production of brackish wastewaters. The treatability of these waters varies from relatively simple for CBM water (dissolved solids < 2,000 mg/L) to complex for the water that is displaced during geologic sequestration of CO2 (dissolved solids > 20,000 mg/L). Reverse osmosis (RO) is a proven desalination process, which requires hydraulic pressures to transport water across semi-permeable membranes. Although RO has been extensively used to treat a variety of source waters, including energy development produced water, managing the concentrate that is produced as a byproduct during RO has persisted as an environmental and economic challenge in maximizing water recovery rate. Here we propose to develop an integrated accelerated precipitation softening (APS)microfiltration (MF) assembly for reducing the volume of concentrate that must be disposed of when using RO to treat high-salinity, energy activity related waters in Wyoming. The ability of chemical precipitation processes, including APS, to remove scale-forming elements from source waters is established. Conventional softening processes are hindered by the production of fine suspensions of mineral precipitates that require relatively long sedimentation times (1.5-3 hrs) and a residual sludge having a low solids content (2-30%). These issues generate concerns related to the size of softening facilities, solids carry over to downstream membrane processes, and sludge disposal. These concerns hinder the use of APS as a management strategy for RO concentrate. APS processes use calcite crystals to provide a preferential surface area for nucleation and growth to occur, thus accelerating the kinetics of mineral precipitation. As such, the accelerated APS process will allow the removal of CaCO3 as well as other scale forming elements that will be incorporated in the CaCO3 crystals and removed. Built upon the previous findings in the field of treating challenging source waters, the unique contribution of the proposed work lies in the three folds: 1) incorporating MF as a polishing step following precipitation softening and prior to secondary RO process; 2) application of calcite seeds to accelerate the softening process and to improve the treatability of the feed water for the secondary RO system; 3) application of an integrated rather than singular approach for maximizing the recovery/reuse potential of highly saline produced waters. The integrated APS-MF assembly for RO concentrate treatment will provide a superior feed water quality to secondary RO systems that will allow for water recovery ratios to approach, or exceed, 90%.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhanced Gas Recovery with Carbon Dioxide Sequestration in a Water-drive Gas Condensate Reservoir: a Case Study in a Real Gas Field

Gas reservoirs usually have high recovery due to high mobility and low residual gas saturation, although some of them producing under water-drive mechanism have low recovery efficiency. Encroachment of water into these reservoirs traps considerable amount of gas and increases the maximum residual gas saturation, which results in the reduction of gas and condensate production. Generally, the rec...

متن کامل

Day-ahead economic dispatch of coupled desalinated water and power grids with participation of compressed air energy storages

Nowadays, water and electricity are closely interdependent essential sources in human life that affect socio-economic growth and prosperity. In other words, electricity is a fundamental source to supply a seawater desalination process, while fresh water is used for cooling this power plant. Therefore, mutual vulnerability of water treatment and power generation systems is growing because of inc...

متن کامل

RESEARCH ON CO2 FLOODING FOR IMPROVED OIL RECOVERY IN WATER FLOODING ABANDONED RESERVOIRS

CO2 injection is an effective technique for improved oil recovery in light oil reservoirs, especially for water flooding abandoned reservoirs. In this study, the lower part of Es1 reservoirs in Pucheng oilfield was introduced as the target reservoir. By studying the minimum miscible pressure in CO2 flooding, the reservoir could achieve miscible flooding. Long core displacement experiments prove...

متن کامل

An Investigation of Oil Spreading Coefficient in Carbonated Water+ Gas + Oil System: an Experimental Study in an Iranian Asphaltenic Oil Reservoir

To provide supplementary oil recovery after the primary and secondary processes, enhanced oil recovery (EOR) techniques are introduced. Carbonated water injection (CWI) as an EOR method can improve sweep efficiency and the risk of gas leakage. On the other hand, the interfacial tension (IFT) is one of the key factors which can affect fluid displacement during the process of CWI greatly. Therefo...

متن کامل

Simulation of Oil Reservoirs Driving Indices and Recovery Mechanisms

Different recovery mechanisms are activated during the production from reservoirs. Wells sometimes are kept with the injection. Therefore the evaluation of injection indices depended on material injection, seems to be necessary. This study is going to determine the drive indices for a reservoir by making a model using Eclipse. The model consists a gas cap and aquifer, in which there is an injec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016